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Abstract Cost-optimized airline resource schedules often

imply a lack of delay tolerance in case of unforeseen dis-

ruptions, e.g. late check-ins, technical defects or airport and

airspace congestion. Therefore, the consideration of time-

liness and robustness has become an important topic in

robust resource scheduling and a wide range of sophisti-

cated scheduling approaches has been developed in recent

years. However, these approaches depend on assumptions

made concerning delay occurrences. A better understand-

ing of delay mechanisms may lead to a better trade-off

between cost-efficiency and robustness and is therefore the

purpose of this paper. We provide a data-driven detection

of decision rules for daytime delay trends, depending on

spatio-temporal attributes. The focus is on interpretable

rules whose prediction accuracy is compared to random

forests as a non-parametric, automated modeling approach.

The obtained results give an insight into both the nature of

primary delay occurrence and the methodical potential of

delay prediction in the context of robust resource

scheduling.

Keywords Data mining � Data-driven delay analysis �
Regression models � Robust airline resource scheduling

1 Introduction

At the day of operations airline transportation frequently has

to deal with disruptions like technical breakdowns, late pas-

sengers, or bad weather conditions. These – mostly unfore-

seeable – events may cause resource allocation conflicts and

thus schedule infeasibility for, e.g., crews and aircraft.

Resulting delay propagation necessitates recovery of

schedules that imply high additional costs. In 2010, the

recovery costs in Europe were estimated to exceed 1.25

billion Euros which are around 81 Euros per minute of

delay – see Cook and Tanner (2011, p. 8) for further

details. Although the number of flights in Europe decreased

from 10 million in 2008 to 9.5 million in 2012, Eurocontrol

expects an increase to 11.2 million flights in 2019 (Euro-

control 2013, p. i). Thus, for airlines the consideration of

schedule robustness has become an important topic in

resource scheduling. The term of robustness involves the

components stability and flexibility. Stability describes the

degree of the ability of a schedule to remain feasible under

changing operational environments. The main instrument

to increase the degree of stability is the incorporation of

buffer times between tasks. In contrast, flexibility means

the degree in which a schedule can be adapted to changing

environments, e.g., by simple and mostly cost-neutral

opportunities to swap resources.

Unfortunately, an increasing degree of robustness comes

along with an increase of the planned costs. Robust resource
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scheduling approaches are efficient if a high increase of the

robustness is gained with the planned costs only increasing

slightly. However, the benefit of even highly efficient

approaches depends on estimation of delays which are

assumed to result from natural seasonal cycles and geo-

graphical patterns. Examples are holidays, differences

between working days and weekend days, or varying

weather conditions due to seasonal and geographical

influences. Additional impacts result from varying demands

which influences the flight schedule and network structure.

In order to efficiently incorporate buffer times and resource

swapping opportunities it is necessary to consider these

cycles in long- and medium-term delay forecasts.

In the context of regular operations, we distinguish

between primary and secondary delay. Delay that occurs

due to exogenous disruptions is called primary delay. By

contrast, secondary delay emerges from propagation effects

in resource networks. It depends on scheduling decisions

and can be avoided by robust scheduling. According to

CODA (2011, p. 6), the ratio of secondary to primary delay

has increased significantly from 0.54 in 2003 to 0.83 in

2008, meaning there were 0.83 min of secondary delay for

1 min of primary delay on average. As the latter depend on

the network structure they can be influenced by scheduling

decisions. For example, delay spreads through the flight

network as a result of insufficient buffer times or missing

cost-efficient recovery procedures. In particular, depen-

dencies between different resource network layers for

crews, aircraft and airport infrastructure, may lead to cas-

cading propagation effects. For a survey on the impact of

non-robust schedules see Atkinson et al. (2013).

There are two general approaches to deal with delay. The

first one aims at increasing the robustness in regular daily

operations, compensating delay resulting from ordinary

disruptions like congestion effects, late check-ins or tech-

nical failure, to name but a few. The adaption to a changing

environment should happen implicitly by delay absorption

or by small manageable interventions. By contrast, there are

highly competitive rescheduling approaches for catas-

trophic scenarios such as severe weather conditions, tem-

porary airport closures or serious technical defects; see

Clausen et al. (2010) for a recent survey. In these scenarios

the main goal is to return to regular operations as quickly as

possible. However, delay resulting from irregular massive

disruptions cannot be anticipated in robust scheduling.

Referring to the first approach, the robustness of a

schedule can be measured by the on-time performance, i.e.,

the sum of all delays. However, exogenous primary delay

cannot be influenced by scheduling. Therefore, the relevant

figure to consider is the secondary delay propagated due to

insufficient buffer times between flights connected by the

same resource. In consequence, a schedule A is more

robust than a schedule B if the amount of propagated

secondary delay is less in schedule A than in B. While

secondary delay can be determined for example by simu-

lating delay propagation, primary delay has to be generated

independently. In consequence, the quality of robustness

measurement depends on how realistically primary delay is

modeled.

In this regard, the main goal of this paper is to examine

the potential of data-driven delay modeling for robust

resource scheduling. Therefore, we derive patterns in

daytime trends of primary delay from historical data and

evaluate their prediction accuracy by statistical modeling.

Since resource scheduling is a long- and medium-term

process, the focus of interest is on spatio-temporal vari-

ables that are available for delay prediction during the time

horizon of scheduling; operational short-term predictor

variables like weather conditions and congestion effects do

not seem to be suitable in this context.

The study is embedded in a research project for robust

airline resource scheduling, focusing on regular daily

operations. According to Fink et al. (2014), one of the main

challenges for model-based decision support is the neces-

sity to take dynamic and stochastic system behavior into

account when decisions are made. This data-driven

research addresses the dynamic and stochastic counterparts

of airline resource scheduling. In order to take into account

the complexity of the data, we model the daytime trends in

an approach following the idea of Analysis of Covariance

(ANCOVA). The evaluation of the prediction accuracy of

the observed patterns is performed by a model assessment

step. The derived stochastic models and decision rules can

be used to refine generators for primary delay in robust

resource scheduling and the simulation of delay propaga-

tion. Note that resource scheduling is an airline-specific

task and therefore all delay models are related to one air-

line only.

The remainder of this paper is organized as follows. In

chapter 2 we discuss recent approaches to the usage of

historical data for determining delay risks in robust airline

resource scheduling. An overview on a generic resource

scheduling framework is provided in order to clarify the

contextual integration of our approach into the scheduling

process. Finally, a discussion on statistical approaches for

large data sets are presented. Chapter 3 gives a description

of the available data and discusses problems in delay

recording. In chapter 4, an exploratory data analysis is

performed and decision rules concerning daytime trends in

primary delay are derived. The prediction accuracy of the

rules is evaluated by statistical model selection in chap-

ter 5. Note that numerical results and interpretations in this

study depend on the underlying data set. Nevertheless, the

model assessment step is adaptable for the evaluation of

varying delay trends. Furthermore, details on the model

application in the related scheduling framework are
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provided. Conclusions and directions for future research

are addressed in chapter 6.

2 Delay Modeling in the Context of Robust Airline

Resource Scheduling

Traditional airline resource scheduling deals with the

minimization of planned costs. The usage of empirical

delay information has become important for the field of

robust resource scheduling. In this section we present

recent advances with special regard to the usage of his-

torical delay information. Furthermore, recent data mining

approaches for large data sets are discussed.

2.1 Relevant Approaches for Delay Estimation

in Robust Scheduling

Ageeva (2000) presents an approach to increase flexibility

of schedules by incorporating swapping opportunities for

aircraft. However, they do not consider the delay risk for

incorporating swaps for flights that are likely to be dis-

rupted. The evaluation of the approach is based on an

increased number of swap opportunities which is consid-

ered as an indicator for increased flexibility.

The scheduled crew ground time is used as a deter-

ministic indicator for stability in (Ehrgott and Ryan 2002,

p. 141). Therefore, the difference between slack duration

and expected duration of a departure delay, specified by

flight routes, is used as a penalty factor for non-robustness.

Weide et al. (2010) use a related measure for a heuristic

iterative crew and aircraft scheduling approach. Schaefer

et al. (2005) incorporate robustness by considering opera-

tional costs of crew pairing instead of planned costs. The

operational costs are determined by separately simulated

crew pairings in SimAir, a simulation framework that uses

empirical delay distributions gained from historical data

(Rosenberger et al. 2002, p. 373).

Yen and Birge (2006, p. 10) fit truncated gamma and

log-normal distributions to real world data from Air New

Zealand in order to generate disruption scenarios for a

stochastic crew scheduling model. No information on the

goodness-of-fit is given. Lan et al. (2006, p. 19) improve

the stability of schedules by considering the delay propa-

gation on aircraft routes. For the estimation they use his-

torical data from the ASQP database. Gamma, log-normal

and Weibull distributions are compared by means of clas-

sical goodness-of-fit tests. As a result, the log-normal dis-

tribution is found the best fit for 84 % of all flight arrival

delays. The approach is also used by Dunbar et al. (2012).

Note that both Yen and Birge (2006) and Lan et al. (2006)

do not separately examine the possible impact of attributes

such as time and location attributes of a flight in their delay

models.

Tam (2011, pp. 89–121) also uses historical data for

delay estimation. The flight delay is modeled by multiple-

regression for every weekday. The regression terms con-

sider the departure and arrival airport and the departure and

arrival time. Note that no interactions between the vari-

ables are taken into account. The quality of the models is

measured by R2 only and the prediction error over an

unknown data set has not been assessed. Dück et al. (2012,

pp. 54–55) present a stochastic model for increasing the

stability of crew and aircraft schedules. They use log-lo-

gistic and log-normal distributions per delay reason for the

generation of primary delay scenarios. The expected delay

of a flight is based on the convolution of different delay

reasons. Delay due to weather, airspace and airport con-

gestion are not considered in scheduling but in the subse-

quent simulation of generated schedules. Ionescu and

Kliewer (2011) use the approach in a stochastic model for

increasing the flexibility of crew schedules.

Shifting the focus away from robust scheduling, there is

a variety of recent studies on the comprehension of delay

mechanisms. Recent results include a large set of opera-

tional decision rules. Ball et al. (2007) give a survey on

delay effects. In a statistical modeling approach for arrival

delay, Hsiao and Hansen (2006) consider queuing, weather

and seasonal effects. They discover negative daytime

trends for queuing effects, i.e., delay occurring in the

morning has a greater impact on delay propagation than in

the evening. Their study extracts a large number of vari-

ables influencing delays which leads to a high explanatory

power.

Xu et al. (2008) use regression models for estimating

airport-related delay for the usage by operations control

authorities. Again, besides the scheduled departure time

and the scheduled turnaround time, especially short-term

variables such as weather, operation demand in relation to

airport capacity, ground holding and in-bound delays are

considered. The prediction error is estimated by applying

the model to an unknown test set. Tu et al. (2008)

decompose delays into seasonal, propagation and random

patterns. They concentrate on a specific airport in order to

predict congestion delay effects. Wesonga et al. (2012)

present the delay analysis of a single airport by using a

variety of influential parameters like flight type, number of

passengers, and weather conditions. Deshpande and Arıkan
(2012) analyze the impact of scheduled block-times on the

on-time arrival probabilities. Arıkan et al. (2013) aim at

examining the impact of airline network structures and

schedules on the reliability of the air-travel infrastructure.

Therefore, they discuss stochastic models for actual block

times, which follow a log-Laplace distribution. Secondly,
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they develop a model for measuring the delay propagation

through the flight network based on aircraft rotations.

The usage of historical data has become a standard

procedure for estimating flight delay. However, we have to

distinguish between micro- and macro-level delay estima-

tion. For robust scheduling there is a demand for macro-

level parameterization as the network characteristics have

to be taken into account. Specific operational rules, e.g., for

a single airport (Wesonga et al. 2012; Tu et al. 2008),

cannot be used adequately for entire resource networks.

The generalization of models with a large number of

explanatory variables and resulting high prediction accu-

racy (e.g., Hsiao and Hansen 2006) for complete networks

cannot be performed easily as it leads to an unmanageable

model complexity. In the end, many short-term prediction

variables with reasonable impact are not available during

the long- and medium-term resource scheduling process.

As a consequence, delay estimation on a macro-level in

robust scheduling is still a black box with mostly non-

transparent assumptions. Most approaches are pared down

to the determination of best-fitting distributions. The dis-

tinction of delay patterns for different parameters of flights

are not taken into consideration. Only Ehrgott and Ryan

(2002) use a distinction between flight routes but only

consider average delay and standard deviation; Tam (2011)

differentiates between time and location attributes. The

necessity of our approach arises from this gap between

operational delay studies and the requirements of robust

scheduling approaches, implying a demand for statistical

models that capture interpretable delay mechanisms on a

macroscopic level. We provide the identification of sys-

tematic daytime trends in delay occurrence that are cate-

gorized by spatio-temporal attributes on the basis of related

literature and practitioner’s expertise. Derived decision

rules are then analyzed with regard to their prediction

accuracy. The comparison to automated model selection by

a random forests approach is presented in order to examine

the area of tension between prediction accuracy and

interpretability of decision rules.

The resulting models and findings can be used as

groundwork for a delay generator, enabling both resource

scheduling and delay propagation simulation closer to

reality. A generic framework for robust resource schedul-

ing is illustrated in Fig. 1. For a given flight schedule,

resource schedules (e.g., for crew and aircraft) are gener-

ated following certain scheduling strategies. Besides

planning cost efficiency, robustness can be taken into

account by considering primary delay and resulting prop-

agation effects, see, e.g., Yen and Birge (2006) and Dück

et al. (2012) for implementation details. The evaluation of

robust scheduling strategies can be performed by means of

event-based simulation. Whenever a delay occurs, it is

either absorbed by buffer times or propagated to subse-

quent flights, depending on the propagation model. This

approach only considers the stability of a schedule. Addi-

tionally, consideration of flexibility requires asks for

recovery strategies in order to adapt the schedule to the

current situation, see Shebalov and Klabjan (2006) or

Ionescu and Kliewer (2011) for specifications. Besides

primary delay, there are additional parameters influencing

the schedule robustness, e.g., the network structure that

determines the degree of freedom for scheduling decisions.

Both hub-and-spoke and point-to-point network structures

may contain flights that have to be flown in succession.

Since flight schedules are predetermined in the context of

this study, we assume network structures to be fixed. A

lesser degree of freedom may also reduce the impact of

refined primary delay models. Therefore, measuring the

impact of network structures on the benefit of improved

delay prediction will be part of future research.

Resource 
Schedules

Simulation
Robust 

Scheduling

Propagation 
Model

Robustness 
Measures

Recovery

Robust 
Scheduling 
Strategies

Flight 
Schedule

Delay Analysis Primary Delay 
Generator

Evaluation of Robust Scheduling Strategies

Fig. 1 Framework for evaluation of robust scheduling strategies
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2.2 Data Mining Approaches for Large Data Sets

The development of prediction models and decision rules

implies a field of tension between prediction accuracy and

interpretability.

The prediction accuracy describes the relation between

the model and the real data. High prediction accuracy

means that there is a strong correlation between the pre-

dicted and the real value. In our context the usage of

empirical distributions for delay predictions would have

high prediction accuracy for short-term forecasts. However,

this can lead to erroneous interpretations of the underlying

mechanisms and result in wrong decision making.

An alternative approach is to focus on the delay gener-

ating mechanisms. This leads to the aspect of model inter-

pretability. The benefit in this approach is the understanding

of a substantial relationship between cause and effect. On

the other hand, the prediction accuracy might be lower as

only the most important patterns are captured.

Both targets of prediction accuracy interpretability are

addressed in the analysis. An exploratory analysis is pre-

pended to statistical modeling. The derivation of decision

rules and the generation of predictive models are closely

related to thefieldof datamining.DataMining is often defined

as the extraction of unexpected patterns in large data sets

(Hand et al. 2001; Hastie et al. 2009). It uses statistical and

algorithmic methods for descriptive and predictive problems.

Large data sets with thousands or millions of variables and

observations pose challenges to formal statistical reasoning.

For example, performing a large number of significance tests

will reject by design a certain percentage of Null Hypotheses

(e.g., Efron 2010). Moreover, with large sample sizes, stan-

dard errors of estimators tend to become so small, that even

‘unimportant’ differences between measured and true values

are reported as significant. In predictive modeling, Big Data

risks to favor complex models that ‘mimic’ the sample and its

statistical fluctuation, but do not necessarily extract its

underlying mechanisms (Hand et al. 2001, Chapt. 4.6.2;

Hastie et al. 2009, Chapt. 7).

While for the purpose of short-term prediction some of

these issues are resolved (for example by assessment of the

bias-variance tradeoff), the data mining methodology does

currently not provide a sound basis for the automated

extraction of interpretable patterns (Breiman 2001a; Cox

2006; Cox and Wermuth 1996). As mentioned above, our

strategy to avoid these pitfalls is to rely on descriptive meth-

ods, complemented by formal inferences, whenever possible.

3 Description of the Data

The following analysis is performed on a data set con-

sisting of 2.5 million flight delay records provided by a

major European airline for the time from March 2003 to

February 2007. Only continental passage line flights are

considered. Due to night flying restrictions there are only

occasional flights between 10 p.m. and 6 a.m. which are

excluded. Eventually, 2.2 million flight records are used for

the analysis. Besides the number of passengers per flight,

the available attributes can be differentiated into time,

location and delay reason. The time aspect is characterized

by scheduled and actual departure and arrival times in

Central European Time (CET) stamps. For the determina-

tion of the local departure and arrival times we integrate

information on time zones and daylight-saving time per

airport, provided by openflight.org.1

The location is represented by the departure and arrival

airport. The route attribute can be derived from origin-and-

destination pairs. The network is based on a hub-and-spoke

structure with two major hubs, where 38.7 % of all flights

depart. 24.45 % of all flights are spoke-to-spoke connec-

tions. In addition to airports and routes, we take the net-

work structure into consideration by distinguishing

between the following directions: hub-to-spoke, spoke-to-

hub and spoke-to-spoke.

A delay is defined as the nonnegative deviation between

the scheduled and actual departure time. The departure

time is defined as the time the aircraft leaves the gate. For

every flight, up to four different departure delay reasons

and their durations are recorded, based on standardized

IATA Delay Codes. They define primary delays as

exogenous effects with codes from 1 to 89, containing

airline internal reasons, disruptions of the turnaround pro-

cess, technical damages, or airport and airspace congestion,

just to mention the main categories. The group of reac-

tionary delays includes the codes from 90 to 96. These

include waiting for passenger or load connections, for the

late arrival of a resource such as aircraft or crew, and for

decisions from operations control. Of course, the transition

between endogenous and exogenous effects is fluent. The

usage of the standardized IATA Delay Codes ensures the

general adaptability of the approach.

Table 1 presents frequencies per number of departure

delay records. Note that in this study we concentrate on

positive delay values, early departures are declared to be

on-time and thus set to a delay of 0 min. This is because

negative delays do not propagate. In case of multiple

records, secondary delay is mostly recorded first. Further-

more, only the delay is recorded that lead to late depar-

tures. Delay reasons that overlap in time are not entirely

recorded, see Fig. 2 for illustration. Both of these effects

lead to an underestimation of delay. In detail, 47.6 % of all

1 OpenFlights Airports Database. http://sourceforge.net/p/open

flights/code/757/tree/openflights/data/airports.dat. Accessed 27 Octo-

ber 2013.
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flights are primarily and 19.75 % secondarily delayed.

8.63 % of the secondarily delayed flights also contain

primary delays.

Furthermore, primary delays as exogenous effects are

inherently hard to predict. In most cases, primary delay can

be recorded only if the departure (and arrival) times are

effected. We also assume that existing patterns in primary

delay occurrence are already taken into account by airlines

in scheduling. Accordingly, as we will see in Sect. 5.3, the

signal-to-noise ratio is rather low in the data.

Focusing on regular daily operations, we consider delays

up to 180 min only, which cover 99.95 % of all flights,

since larger delays imply serious disruptions that cannot be

handled by regular robust scheduling. On the one hand the

marginal costs for robustness become too large by taking

into account such severe disruptions. On the other hand

airlines have more effective capabilities to cope with these

circumstances (Tam 2011, p. 91).

4 Exploratory Data Analysis

This section deals with an exploratory analysis of the data

set. Beginning with a descriptive analysis, its aim is to

provide a first overview of the data and to provide indi-

cations of cyclic patterns.

4.1 General Delay Trends

Figure 3 illustrates the average primary delay per day for

the whole network. The delays seem to oscillate with a

considerable amplitude during the entire span of time. The

range of average delays is between 5 and 30 min. During

winter months the average delay reaches its peak values

more frequently. The black and dark grey lines are local

estimations of a time trend using different smoothing

parameter. This means that for a time point t, delays in its

neighborhood are weighted in decreasing direction in order

to determine its conditional mean. One can see that the line

(1) is reasonably straight, indicating the absence of sys-

tematic changes of delay over time. Line (2) with a lower

smoothing parameter indicates the peaks during winter

months as mentioned above. Note that the derivation of

time trends is a subjective decision, see (1990, p. 45) for

further details.

Table 1 Occurrence frequencies of multiple delay records

# Delay records 0 1 2 3 4

Abs. frequency 911,568 1,043,622 236,148 17,184 1732

Rel. frequency 41.24 % 47.22 % 10.68 % 0.78 % 0.08 %

Rotation Delay

Duration

Duration

Case 1

Rotation Delay

Duration

Case 2

Rotation Delay

Duration

Case 3

Duration

Primary 
Delay

Duration

Primary 
Delay

First Delay 
Reason

Second Delay 
Reason

Primary Delay 
(hidden)

Primary Delay 
(hidden)

Fig. 2 Delay reasons overlapping in time

Fig. 3 Average primary delay

per day over the time course
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Autocorrelation tests show that there are weak depen-

dencies between Monday and Tuesday as well as between

Thursday and Friday. We assume that this pattern can be

explained by outward and return journeys at the beginning

and the end of the working week.

Table 2 gives additional information on delay trends

over time. In order to prevent zero-inflation we distinguish

between the delay occurrence ratio and the length of delay.

As the available data starts in March 2003, a period is

defined as the interval from March to February of the

following year each. Note that the relative differences are

computed pairwise for succeeding periods. There are no

obvious patterns. This is interesting, because one expects

increasing delays due to a steady increasing flight demand.

It seems that either slack capacity is available in the ground

processes and the airspace system, or that the amount of

resources grows with increasing demand. For further

analysis, these patterns simplify the situation, since we can

concentrate on seasonal effects in absence of complicating

time trends and autocorrelations. But a straightforward

derivation of delay occurrences from the flight schedule

structure cannot be made.

4.2 Statistical Distributions for Description of Primary

Delay Data

In the absence of strong autocorrelations and time trends,

we empirically identify density functions that describe the

delay during the different seasons. A first visual indication

for well-fitting distributions is obtained by quantile-quan-

tile-plots with a family of event-related distributions

(Lindsey 2004, Chapt. 4). The log-normal, log-logistic and

the Weibull turned out to be reasonable candidates. These

distributions are fitted by Maximum Likelihood to the

empirical data. The left panel of Fig. 4 illustrates an

exemplary fit for summer months (May, Jun, Jul, and Aug).

Log-normal and log-logistic seem to fit slightly better than

Weibull. These results are consistent with (Lan et al. 2006,

p. 19) who also consider these distributions as there are

many small delays and only few very large delays. Taking

the logarithm of the data leads to good fits with the normal

and logistic distributions (right panel of Fig. 4). The

logistic has a slightly better fit. However, there are crucial

differences of both distributions for small values between

0 and 1. This can be explained by the data quality: only

delay larger than one minute was considered, and the

measurement unit is in minutes. Therefore, the logarithm

for values smaller equal one will be distorted. The results

can be reproduced for other data excerpts, i.e., not just for

summer months.

Conventional v2-tests are not suitable for determining

goodness-of-fit of theoretical distributions for large data as

already small differences between observed and theoretical

frequencies lead to a rejection of the null-hypothesis. For

example, the null-hypothesis for the log-normal distribu-

tion is rejected on a 5 % level at values larger than 47.40

with 33� of freedom. Our sample statistics has a value of

over 2000. This problem is already known from Berkson

(1938).

4.3 Cyclic Patterns of Delay Occurrences

This section deals with determining patterns in primary

delay. To this end, flights are categorized by temporal and

network attributes. In detail, there are the attributes season,

month and week, weekday and direction, for example from

hub to spoke or the inverse. The local time, measured at

each departure airport, is used to determine daytime trends.

In the remainder of the analysis, hourly bins are used for

the departure times, but smaller intervals showed similar

results. The analysis intentionally focuses on the hub-and-

spoke network structure and not on individual airports. In

particular, the number of flights at individual spoke airports

is so small that it is impossible to derive general daytime

patterns. The same holds for an entirely route-based eval-

uation. Systematic dependencies between congestion indi-

cators, such as the number of passengers and the primary

delay length, cannot be observed. This is an indication that

the airline has already eliminated predictable delay in its

schedules.

Figure 5 exemplarily shows daytime trends in the dif-

ferent months (Jan to Dec from left to right) for spoke-to-

hub flights at working days. Thinner lines in the back-

ground indicate the conditional average delay. The over-

lapping bold lines are the result of linear regressions. Note

that the vertical axis depicts the logarithm of the actual

delay.

In general, delay either grows or decreases during the

day. Most months show a negative daytime trend as longer

delays occur more often during morning hours. In contrast,

in the summer months (May, Jun, Jul and Aug) a reverse

daytime trend can be observed as evening hours display a

higher average delay than morning hours. In conclusion,

the daytime trend differs between months.

Systematical daytime trends can also be observed for

different categories, i.e., for other flight directions and for

the weekend. The daytime trends for these categories are

Table 2 Delay trends over the course of time

Period 1 2 3 4

Average 10.79 10.61 10.53 10.90

D(ti-1,ti) – -1.67 % -0.75 % 3.51 %

Ratio 49.49 % 46.36 % 47.04 % 47.81 %

d(ti-1,ti) – -6.32 % 1.47 % 1.64 %
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similar with a slightly lower explanatory power. For the

presentation of daytime patterns we use months as a sea-

sonal attribute. The consideration of weeks instead of

months is slightly more precise, especially for the location

of transition points between winter and summer months.

The summer cycle begins in week 17 (mostly end of April)

and ends in week 36 (beginning of September). Without an

exception, winter and summer weeks always follow their

seasonal daytime trend.

Figure 6 illustrates spoke-to-spoke flights with the

additional distinction between weekdays for the summer

months and the rest of the year, respectively. The expected

increasing daytime trend for summer is not valid for

Monday and Saturday. All other weekdays, however, show

the previously observed seasonal daytime trend. In the rest

of the year, Friday and Sunday show a behavior that differs

from the expected seasonal daytime trend.

Additionally it has to be said that for hub-to-spoke

flights the dependency of weekdays can be observed, too –

in the summer months there are negative daytime trends for

Monday and Friday. However, the daytime trend for hub-

to-spoke flights during the rest of the year is still slightly

negative for Friday and Saturday, though it almost flattens

out. Spoke-to-hub flights do not show a dependency on

weekdays as their daytime trends follow the seasonal trend

both in winter and summer.

We assume that there are peaks in the week structure

that overlay the seasonal trends. On Monday morning and

Friday evening there are peak values due to increased

demands. By contrast, on Saturday evening very low

Fig. 5 Daytime trends per month for flights into hubs

Fig. 4 Distribution for primary delays in summer months
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demand levels are expected. An important fact is that

spoke-to-hub flights do not show these effects as they

monotonously follow the daytime trend of the current

season for every weekday. We suppose that this difference

is an implication of the fact that the hub is not the final

destination for most passengers.

Summarizing the above, the following decision rules

can be derived from our exploratory analysis:

1. Regarding the average delay per hour, there is a

positive daytime trend during the summer months

(May, Jun, Jul, Aug), except on Mondays and Satur-

days in case the arrival airport is a spoke.

2. By contrast, a negative daytime trend can be observed

during the rest of the year, except on Fridays and

Sundays for spoke-to-spoke connections.

We validate the rules for every single day. The first rule

is valid for 57.86 % of all considered days, the second for

65.46 %, respectively. The weighted average for all days is

62.90 %. Interestingly, by taking into account seasons

only, the error increases by just 2 %. The results align with

results obtained by a CART analysis where the error

remains almost constant when forcing additional splits

beyond the seasonal one. This first evaluation resulting in

poor validity of the rules strongly demands for a modeling

approach that is capable of capturing the complexity of

these mechanisms.

5 Model Selection and Assessment

In the previous sections we identified seasonal and monthly

daytime trends that were positive in summer and negative

during the rest of the year. We also discovered that on a

daily level, these trends sometimes deviate from their sea-

sonal component: Mondays and Saturdays during summer

show a negative daytime trend, whereas Fridays and Sunday

during winter show a positive daily trend. In this section we

set up statistical models to quantify the predictive power of

these findings. With statistical model we mean a model of

the joint distribution of the observed data, along the com-

mon definitions such as (Cox 2006) or (Hastie et al. 2009).

More precisely, our problem is to model daytime trends

in a number of spatio-temporal categories, such as flight

directions, weekdays, and a seasonal component given by

seasons, months or weeks. This is commonly referred to as

ANCOVA (Analysis of Covariance). Two particularities of

this approach are:

Fig. 6 Daytime trends per weekday for spoke-to-spoke connections
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• Daytime trends instead of average value

In an analysis of variance (ANOVA), the average value

is estimated for each category. Categories with signif-

icantly different average values are identified by

hypothesis tests. In our models, a daytime trend is

fitted instead of the simple mean values. Such an

analysis with a mix between categorical and continuous

explanatory variables is called Analysis of Covariance

(ANCOVA) (Lindsey 2004, p. 20).

• Interactions

Classical ANCOVA models introduce different inter-

cepts for each category only. This gives us for example

one daytime trend for summer and a shifted one for

winter. As identified in the previous chapter, these

trends may differ in slope across the categories;

summer trends are positive and for winter months they

are negative. Such patterns can be modeled by inter-

actions between the continuous and categorical covari-

ates. Then, the prediction for time t in the k-th category

is

lðtÞ ¼ b0k þ b1kt

corresponding to a linear model with intercept b0k and
slope b1k. Instead of linear time-trends, we will later

also fit cubic splines, corresponding to a basis expan-

sion of the form lðtÞ ¼ b0k þ
P

j bjkfjðtÞ, where fj is the
j-th transformation of t. Note that the interaction

between the k-th category and the time-variate is cap-

tured by the parameter b1k.

The main assumptions in these models are their additive

structure and their stochastic behavior. This means that for

every category, the response is considered to be a random

variable with mean being a function of time and constant

variance. Instead of Gaussian variables, we assume log-

normal variables. Other distributions, especially those

belonging to the exponential family, are natural extensions

to our approach. Note that we will not perform significance

tests on estimated parameters, but only assess prediction

accuracy of our models. Thus, distributional assumptions,

including independence in the residuals, are not required at

this stage of research (see, e.g., Weisberg (2005) for a

discussion on stochastic assumptions in regression, and

where they are needed). Auto-correlated data is tradition-

ally modelled by time-series analysis. However, autocor-

relation can sometimes already be explained by appropriate

time-dependent covariates (Lindsey 2004, p. 10). Based on

the descriptive analysis, on our purpose of the models and

on the fact that we perform a macroscopic analysis, we

believe that neglecting possible autocorrelation can be

justified.

The remainder of this section is organized as follows: in

a first step the predictive power of categorical variables of

the identified daytime trends is determined. In order to

maintain relative comparability, single models for the

whole data set are considered. Subsequently, a residual

analysis is performed and the prediction error on unknown

data is estimated.

All model fitting is carried out in the R programming

language (version 3.1.2) on an Intel i7 950 Quad-Core

processor with 3.07 GHz and 24GB RAM. The most

complex models can be estimated within several minutes;

however, the bottleneck is the availability of memory.

5.1 Structural Model Selection

The first step deals with the selection of the model struc-

ture, and especially with the determination of the cate-

gorical variables. All models are fitted by maximum

likelihood, more precisely by the iteratively reweighted

least squares method. Table 3 illustrates the results. All

models are based on delays on a log-scale. As a measure

for the predictive quality of the models we penalize the

likelihood by model complexity with the known informa-

tion criteria AIC and BIC, see for example Hastie et al.

(2009, pp. 230). The AIC is used to give the relative quality

of different models on a given set of data. The differences

of the AIC values are given as the differences to the pre-

vious model each, except for model S1, referring to L5.

We use the nominal parameters S (season), M (month),

W (week), WE (weekday) and DI (direction) to determine

the category. A linear regression is then fitted for the

interaction between the categorical variables and the con-

tinuous variable D (daytime). The simplest models are a

single daytime trend for all levels and categories (L1), and

one daytime trend per season (L2). Already, AIC improves

by 462 and 2038 units, respectively. Allowing for a

Table 3 Structural model selection

Model DAIC DBIC #Parameters

Linear

models

L0 Mean value – – 1

L1 D -462 -450 2

L2 D � S -2038 -2016 4

L3 D � M -2355 -2126 24

L4 D � W -3332 -2371 108

L5 D � S � DI � WE -1031 -1305 84

L6 D � M � DI � WE -5142 -338 504

L7 D � W � DI � WE – – 2268

Spline

models

S1 D(3) � S � DI � WE -4614 -3927 168

S2 D(5) � S � DI � WE -2779 -1819 252

S3 D(15) � S � DI � WE – – 672
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daytime trend per month and week improves the AIC by

2355 (L3) and additional 3332 (L4) units. Our decision rule

of the previous chapter, namely that daytime trends are

permitted to differ among seasons, weekdays and direc-

tions, clearly improves the fit (L5, L6). Note that L6

already contains 504 regression parameters, and that model

L7 cannot be computed anymore on the available system.

In order to further improve the prediction accuracy, we fit

cubic splines (models S1 and S2) instead of linear trends

(L5). Fitting regression splines is still linear in the parame-

ters. What makes the difference, however, is a previous

transformation of the continuous daytime variable according

to a basis expansion (see Hastie et al. 2009, Chapt. 5.2). An

example can be seen in Fig. 7 where we display the linear

trend and two splines for a smaller data excerpt with the

highest possible degree of freedom (15). The more degrees

of freedom, the more splines are allowed. Numerical

experiments showed us that the highest possible degree of

freedom for model L5 is 5. The improvement in AIC and

BIC is considerable, and higher values up to the maximum

of 15 are in principle desirable. However, the resulting

models can no longer be estimated or interpreted due to their

complexity. Due to the same reason, the application of

splines in models L6 and L7 is not possible.

In summary, the results confirm the observations of the

exploratory analysis. All previously identified categorical

variables lead to a considerable improvement of the pre-

diction accuracy. Cubic splines improve the linear trends

within the categories, although the most complex models

can no longer be computed. However, this can be done in

the following model assessment step. We concentrate on

models represented by D(15) � X � DI � WE, where X

defines the seasonal component (season, month or week).

5.2 Residual Analysis

The main assumptions for our regression models were that

for every category and every time point t, the data can be

described by a log-normal distribution with the mean value

as a cubic spline function of the time t and constant vari-

ance across the time.

If these assumptions are true, then the regression

residuals, i.e., the differences between the predicted and

observed values, have zero mean and follow a normal

distribution with constant variance across time (normal

because the logarithm of the delays was taken). A non-

parametric bootstrap was performed to validate these

assumptions. Figure 8 shows typical results for a category

of the summer months, taking into account only flights into

hubs. On the horizontal axis, the daytime is displayed in

hourly slots. On the vertical axis, bootstrapped statistics of

the residuals are displayed.

The black line depicts the residual averages. They fol-

low a straight line on the zero value, thus the spline model

does indeed capture the conditional mean of the data. The

blue lines are pointwise estimates of the residual standard

deviation at time t. If the homoscedasticity assumption is

true, then they should be constant overtime. This is rea-

sonably the case, although regarding a few time-points,

e.g., at t = 12 or t = 21, care should be taken. Finally, the

red lines depict 16 and 84 % quantiles of the residuals.

They were selected according to those values which match

the standard deviation of a normal distribution. Therefore,

if the blue lines correspond to the red lines, the normality

assumption is reasonable, at least to the second order. The

84 % quantiles (upper line) meet this condition very well.

For the 16 % quantiles (lower line), differences to the

standard deviation in the order of 10-1 are the rule, not the

exception. This means that the model does not accurately

predict delays that are smaller than the average delay at

time t. This finding also corresponds to the poor fit of the

normal distribution on the left tail in Fig. 4, although due to

the regression function, no general relationship between

marginal and residual distributions exist.

The quality of the bootstrap estimates was also assessed.

It turned out that the standard errors of these estimates were

Fig. 7 Exemplary spline

models for daytime trends of an

exemplary category
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in the order of 10-2 (see Figure A1 in the Appendix –

available online via http://link.springer.com).

We conclude that the model assumptions are reasonably

met for large delay predictions and require care for small

delay predictions. Particularly for small categories, e.g.,

when splitting up the data by season, flight direction and

weekdays, the effects of the left tail become apparent. Note

that formal statistical inference about model parameters are

not the target of this analysis, thus independence assump-

tions of the residuals are not verified.

5.3 Prediction Accuracy

While the structural model selection above is based on the

analytical information criteria AIC and BIC, this section

deals with a resampling technique to validate the prediction

accuracy of the best structural models. As in this step the

relative comparability is not of primary concern, the models

can be split up into smaller and therefore less complex cat-

egorical models. The parameter estimations remain the same.

We follow the approach to model assessment, as

described in Hastie et al. (2009, Chapt. 7). The target of this

approach is the estimation of the expected extra-sample

prediction error (EEPE), the prediction error that is inde-

pendent of a given training data set. For comparison, the in-

sample error (IE) for the training set is provided. In analogy

with the the idea of ANOVA, the EEPE of our model m is

computed as the residual sum of squares RSSm;s for each

category concerning a validation set s. It is compared to the

RSSa;s of a model a that predicts the average value of each

category, respectively. Then, the improvement factor

impEEPEm;s ¼ 1� RSSm;s

RSSa;s

� �

gives the amount of the variance in a validation set s that

can be explained by our model and thus the improvement

of the EEPE obtained by model m. Concerning the IE, the

computation of impIEm follows analogously for the training

set.

For the analysis we repeatedly split the data into training

and validation data (70/30) for a large number of runs and

estimate the corresponding test errors. In the end we

average them for all categories, weighted by the respective

number of flights. It turns out that with 100 runs, the

averages converge towards a stable number. Table 4 shows

the results for the models D(15) � X � DI � WE, where X is

one of the seasonal variables ‘S’, ‘M’ and ‘W’. Other

models from Sect. 5.1 are dominated by these models in

both IE and EPEE.

On average, the EEPE can be improved by 1.95 % for

model E1. In this model, 7.5 % of all categories show an

EPEE improvement of more than 3 %. One can also

observe the bias-variance-tradeoff by means of IE and

EEPE. While the best in-sample error can be achieved by

choosing more categories (E3), these models perform quite

poorly regarding the EEPE. Furthermore, some categories

in E2 and E3 have a negative EEPE value, especially in

categories containing a small number of flights. In partic-

ular, these are the categories for spoke-to-spoke flights and

during the weekend. It turns out that this effect is merely

associated with the small category sizes.

For an illustration, see Fig. 9 which exemplarily shows

the relative improvement of the EPEE under the squared

error for model E2. The horizontal-axis shows the number

of flights within the category concerned. As we consider

flights that are delayed at least by 1 min, it is obvious that

categories with hub-to-spoke flights are larger than those

with spoke-to-hub flights, as the former are more likely to

be delayed. Due to the hub-and-spoke structure there are

less direct connections between spoke airports.

Regarding the IE, the results are comparable with the

ones obtained by non-parametric random forests that

Fig. 8 Typical behavior of the

residuals per daytime
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independently grow a large number of regression trees by

repeated bootstrap sampling of the data (Breiman 2001b).

In our case, random forests are applied independently from

our previous decision rules. However, they cannot be

applied to the whole data set due to memory restrictions,

and repeated sub-sampling does not provide reasonable

results. The same holds for the seasonal model (E1). An

application based on monthly (E2) and weekly (E3) basis

results in an IE of 3.71 and 6.39 %, respectively. It

becomes apparent that these results are slightly better but

still in the order of the ones obtained by our modeling

approach. Prediction accuracy estimation for unknown data

is performed internally in random forests by out-of-bag

sampling (Hastie et al. 2009, pp. 592). For the prediction of

xi trees are used that do not contain the observation for xi in

their bootstrap sample used for growth. The prediction

accuracy can be increased by 3.20 % (E2) and 4.13 %

(E3), respectively. These values are expected since, in

contrast to our decision rules, random forests implicitly

provide an individual dynamic rule selection for all cate-

gories – leading to higher prediction accuracy in conjunc-

tion with a lack of interpretability.

Finally, the absolute deviation between observed and

predicted delay is a metric that is easy to interprete, since

its unit is in minutes. While the average absolute deviation

of the mean model L0 is 8.29 min, it can be reduced by

nearly 1 min to 7.32 by using the best ANCOVA-model

E1. The best categories even show an improvement of the

average absolute prediction error of 2.5 min (see Figure A2

in the appendix). These results are based on the presented

daytime trends only. The absolute improvement can be

used for estimating the benefit in real costs by linking them

to specific airline’s delay cost rates.

5.4 Model Application

Finally, we describe the incorporation of the generated

models into the framework for robust resource scheduling

and delay propagation simulation for resource schedules.

For a given set of flights F in a schedule, it is necessary to

determine the predicted primary departure delay df for

each flight f 2 F. All flights are part of a category that – in

our resulting models – is currently determined by the

direction, a seasonal component and the weekday.

For every category a regression model is fitted for the

daytime variable.2 For a given daytime t, the expected

primary delay l̂ðtÞ and its standard deviation r̂ tð Þ,
depending on the departure time t, is determined per cat-

egory. Since we use log-scale delays, a random number

X�N l̂ðtÞ; r̂ðtÞ2
� �

can then be picked from the normal

Fig. 9 Improvement per

category for model D (15)� M�
DI� WE

Table 4 Model evaluation

Model Category Improvement

#Categories Ø #Flights EEPE\0 (%) IE (%) EEPE (%) Abs

E1 D(15) � S � DI � WE 42 23,365 – 2.14 1.95 0.964

E2 D(15) � M � DI � WE 252 3,894 1.50 3.02 1.93 0.971

E3 D(15) � W� DI � WE 1134 865 7.10 5.73 1.23 0.984

2 The parameters of an exemplary cubic spline model are given in

Table A1 in the appendix (available online via http://link.springer.

com).
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distribution. Finally, the resulting primary delay d is

computed as d ¼ eX .

Concerning scenario-based robust resource scheduling

as in (Yen and Birge 2006) or (Dück et al. 2012), the

robustness evaluation of a resource schedule takes into

account a set of primary delay scenarios X. With a given

set of flights F, a delay scenario x 2 XF represents random

variables for primary delay that result in deviations from

departure times of the flights f 2 F. Now, the primary

departure delay of flight f in scenario x is dfx which can be

drawn analogously from our model.

With primary delays given, the robustness of resource

schedules can be measured by determining the amount of

propagated delay. An exemplary delay propagation model

for aircraft and crew that is suitable for our approach is

provided by Dück et al. (2012).

6 Summary and Outlook

During airline operations, exogenous disruptions often lead

to delay that may result in infeasible resource schedules.

The estimation of delay based on historical data is a recent

topic in robust airline scheduling.

A better understanding of delay mechanisms may lead to

a better trade-off between cost-efficiency and robustness

and is therefore the purpose of this paper. We provide a

regression modeling approach for daytime delay trends

based on a data-driven detection of spatio-temporal pat-

terns. The focus is on interpretable rules whose prediction

accuracy is compared to random forests as a non-para-

metric, automated modeling approach.

First, decision rules were derived that describe daytime

delay trends in spatio-temporal categories. For example,

there is a positive daytime trend during summer, except on

Mondays and Saturdays when the arrival airport is a spoke.

Thus, we can state that the daytime trend depends on the

interaction of the considered attributes. In order to validate

these rules, we performed a quantitative evaluation by

means of statistical modeling. From a technical point of

view, the nature of our problem is related to the analysis of

covariance (ANCOVA). The highest prediction accuracy

so far can be achieved by spline models for daytime trends,

taking into account interactions between the categorical

variables season, direction and weekday. Although the

derived decision rules, taken as a whole, are valid for only

62.90 % of all days, this leads to a reduction of the absolute

prediction error by about 1 min on average. In particular

categories, our approach leads to an even higher

improvement of the prediction accuracy. The overall pre-

diction accuracy is comparable to non-parametric random

forests that imply an individual categorization and rule

selection but lack interpretability.

However, we can assume that in general, primary delays

are inherently hard to predict in the long-term on a

macroscopic level. In this context, one always has to take

into account that delay recording underlies constraints that

lead to underestimation, e.g., predictable delay may already

be prevented by scheduling decisions of an airline. In close

connection to this, it is desirable to check to which extent

the findings may be generalized regarding other airline

delay data.

A lesson learned during this research was the discovery

of the low signal-to-noise ratio of the time trends. They

look promising on aggregated data, asking for further

investigation and interpretation. During the statistical

analysis, the variance of the delays around these time

trends became apparent. Methodologically interesting was

that, due to the large data sets, the standard errors of sta-

tistical estimators were so small that the resulting infer-

ences were no longer conclusive. This is a general

challenge of data-driven approaches that aim to argue by

other means than predictive accuracy.

Future work shall therefore identify the conditions,

under which accurate predictions of primary delay are

feasible. The generated prediction models can then be

implemented into a scheduling and simulation framework

in order to obtain a more realistic evaluation of schedule

robustness. The emerging question is to what extent an

improved delay prediction affects the buffer management

in hub-and-spoke networks and whether it actually leads to

significant improvements of the robustness of schedules.
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